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Abstract

Solute-solvent transmembrane flux models are used throughout biological sciences
with applications in plant biology, cryobiology (transplantation and transfusion
medicine), as well as circulatory and kidney physiology. Using a standard two param-
eter differential equation model of solute and solvent transmembrane flux described
by Jacobs (1932, J. Cell. Comp. Phys., 2:427), we determine the functions that
describe the intracellular water volume and moles of intracellular solute for every
time t and every set of initial conditions. Here we provide several novel biophysical
applications of this theory to important biological problems. These include using
this result to calculate the value of cell volume excursion maxima and minima along
with the time at which they occur, a novel result that is of significant relevance to
the addition and removal of permeating solutes during cryopreservation. We also
present a methodology that produces extremely accurate sum of squares estimates
when fitting data for cellular permeability parameter values. Finally, we show that
this theory allows a significant increase in both accuracy and speed of finite element
methods for multicellular volume simulations, which has critical clinical biophysical
applications in cryosurgical approaches to cancer treatment.
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1 Introduction

Mass transport models are used extensively throughout the biological sciences
with applications ranging from plant biology and cryobiology to circulatory
and kidney physiology [9,12,15,16]. The two parameter solute and solvent
model developed by Jacobs [5], and the related Kedem and Katchalsky [7]
model have been used for a half-century or more to model transmembrane
flux in biological systems. A discussion of the similarities and differences in
the two formalisms can be found in the excellent review by Kleinhans [8].

In particular, the Jacobs model has provided a simple and accurate description
of solute and solvent flux using a system of ordinary differential equations 2 :
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where Vw and nis denote the intracellular water volume and moles of an intra-
cellular permeating solute, respectively, and the other parameters are defined
in Table 1. We note that the extracellular solute concentrations are given in
terms of osmolality, and the intracellular solute concentrations are given as
molarity times a constant temperature dependent conversion factor, δ1 and
δ2, to yield osmolality.

Until very recently, the use of this system was almost exclusively limited to
numerical simulations—algorithms that approximate the solution of the dif-
ferential equations [8]. Because of this, standard calculus techniques could not
be applied to find the maximum or minimum of water and cellular volume or
the times at which they occur. Additionally, algorithms for finding cell plasma
membrane permeability coefficients had to either be inaccurate or very com-
plicated and difficult to implement [13]. Furthermore, large scale calculations
where hundreds of thousands of volume calculations (as with finite element
models of tissue transport) are needed become exponentially computationally
inefficient as the scale or accuracy is increased [10].

Recently a method for obtaining the volume maxima or minima using Eq. (1)
was developed using a technique that defines an implicit relation between vol-
ume and concentration [6,19]. However the method presented in these papers
loses critical time information and thus cannot be used to accurately predict
when these cell volume maxima and/or minima occur. This time information
is a key parameter used in the development of protocols for addition or removal
of high concentrations of cryoprotective agents such as glycerol or dimethyl
sulfoxide (Me2SO) [17], in the prediction of macromolecular uptake by arteries

2 Note that we use the mathematical convention ẋ = dx
dt
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[15], and in kidney transport [9].

These current problems are ameliorated with the existence of an exact solu-
tion of Eq. (1); one that expresses the water volume, Vw, and the moles of
solute nis, as functions of time and initial conditions. That is, given a set of
initial conditions such as cell volume and surface area, intra- and extracel-
lular concentration, etc. . . we would like to have a formula for water volume
and moles of solute as a function of time. In this work, we present a method
whereby the exact solution of Eq. (1) (and thus the exact volume and in-
tracellular solute concentration) can be determined for all experimental time.
We then apply this exact solution technique to classic cryobiological problems
involving solute and solvent transport such as finding cell volume, cell water
volume, and intracellular solute concentration maxima and minima, determin-
ing cell membrane permeability parameters, and improving large scale tissue
transport models.

2 Methodology

2.1 A reparameterized solution to the Jacobs model

For most non-linear differential systems, it is impossible to express their so-
lutions explicitly as a function of time and initial conditions [1]. The Jacobs
model is a unique case. To our knowledge, it cannot be solved as a function of
the temporal variable using traditional methods such as separation of variables
or integration factors and this is likely the reason why no exact solution has
emerged since its inception. Our analysis is based on a result from the theory
of ordinary differential equations (ODEs): the qualitative behavior of a system
of ordinary differential equations (e.g. its phase portrait, orbit structure, max-
ima and minima, etc.) is the same with rescaled time. In the same way that a
logarithmic curve can be turned into a straight line using a logarithmic scale
on one axis, we can stretch and squeeze the solution of a differential equation
so that the solution appears to be linear.

For example, if a system can be written in the form

u̇(t) = λ(u(t))F (u(t)), (2)

where λ : Rn → R is a scalar valued function, the qualitative behavior is
identical to that of the system

ẇ(τ) = F (w(τ)). (3)
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More precisely, if u(t) is a solution of Eq. (2), then the function q(τ) given by

q(τ) :=
∫ τ

0

1

λ(u(s))
ds (4)

is invertible and w(τ) := u(q(τ)). Similarly, if w is a solution of Eq. (3), then
u(t) := w(p(t)) is a solution of Eq. (2), where p := q−1. For a proof of this
standard result, see Chicone [2].

It is convenient to rename constants as a, b, c, α, and β (see Table 2) so that
Eq. (1) simplifies to

ṅis = β + α ni
s

Vw
,

V̇w = b+ a n
i
s

Vw
+ c 1

Vw
;

or, equivalently,

ṅis = 1
Vw

(αnis + βVw),

V̇w = 1
Vw

(anis + bVw + c).
(5)

Equation (5) is in the form of Eq. (2), where λ(nis(t), Vw(t)) = 1/Vw(t) and
F (u) = (αnis(t) + βVw(t), anis(t) + bVw(t) + c). Hence we can recover solutions
of Eq. (5) from the system

ṅ = αn+ βv,

v̇ = an+ bv + c.
(6)

The linear Eq. (6) can be solved explicitly using standard ODE techniques. In
fact, the general solution is

n(τ) =
1

a

(
c1 (r1 − b) er1τ + c2 (r2 − b) er2τ + b

cα

γ
− c

)
, (7)

v(τ) = c1e
r1τ + c2e

r2τ +
cα

γ
, (8)

where r1 := 1/2
(
ρ−
√
ρ2 + 4γ

)
, r2 := 1/2

(
ρ+
√
ρ2 + 4γ

)
, ρ := (α + b),

γ := (aβ − αb), and c1 and c2 are arbitrary constants. If we specify nis(0) and
Vw(0), we have

c1 =
2bcα− cr2α + γ(c+ anis(0) + bVw(0)− r2Vw(0))

γ(r1 − r2)
,

c2 = −2bcα− cr1α + γ(c+ anis(0) + bVw(0)− r1Vw(0))

γ(r1 − r2)
.
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Thus, the equation for total cell volume can be written as

Vtotal(τ) = Vw + nisV + VbViso

= c1

(
V

a
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)
er1τ + c2

(
V

a
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)
er2τ

+ (
V

a
b− 1)

cα

γ
− V

a
c+ VbViso. (9)

We can glean some information about the exponents r1 and r2. For example,
since our linear Eq. (6) always has an asymptotically stable rest point in
physiologic conditions (data not shown), we will assume that r1 and r2 are
both negative (see Strogatz [14]). We also note that

cα

γ
=
M i

n(0)

M e
n

Vw(0). (10)

This is in agreement with the negative sign of r1 and r2, since, as time pro-
gresses, the first two terms of Eq. 8 go to zero, leaving cα/γ equal to the ratio
of initial intracellular and extracellular concentrations. Hence,

lim
t→∞

v(0)− v(t) = c1 + c2. (11)

Note that if the non-permeating solute concentration is constant—a common
situation in cryobiology, then limτ→∞ v(τ) = v(0) implies c1 = −c2.

Similarly, the exponential terms of the solution n(τ) go to zero with time.
Hence, we have that

lim
τ→∞

n(0)− n(τ) =
1

a
(c1(r1 − b) + c2(r2 − b)). (12)

For Eq. (5), we have λ(n, v) = −1/v, thus, using Eq. (4), if q(0) = 0, then we
have

q(t) =
∫ t

0

(
c1e

r1s + c2e
r2s +

αc

γ

)
ds,

=
c1 (er1t − 1)

r1
+
c2 (er2t − 1)

r2
+
αc

γ
t. (13)

See Fig. 1 for a plot of q(t) for typical values of Lp and Ps, where v and n are
defined in Eqs. 7 and 8. Thus, the desired exact solution of Eq. (5) is given by

Vw(t) = v(q−1(t)),

nis(t) = n(q−1(t)).
(14)
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2.2 The inverse of q

So far we have an exact solution for the Jacobs model and the function that
transforms reparametrized time back to real time. We are now interested in
finding the function that transforms real time to the transformed time so that
we can use the exact solution methods to analyze experimental data.

We know that the time transform function q is invertible (please see Chicone
[2]), and we have an explicit equation for Vw(t) and nis(t) (Eq. (14)). The next
challenge lies in finding q−1(t). Define p(t) := q−1(t).

To find a formula for p(t) in terms of q(t) and its derivatives only, we can
use the Lagrange-Burman reversion formula [3] to obtain the power series
representation

p(t) =
∞∑
n=1

tn

n!

[
dn−1

dtn−1

(
t

q(t)

)n
t=0

]
. (15)

In other words, in the Taylor series

p(t) =
∞∑
n=1

p(n)(0)
tn

n!
, (16)

the derivatives are given by

p(n)(0) =
dn−1

dtn−1

(
t

q(t)

)n
t=0

.

In practice, it is easier to determine the Taylor coefficients by a recursion
formula derived from the chain rule. Since p(q(t)) = t, taking the derivative
gives p′(q(t))q′(t) = 1. Dividing by q′(t) gives p′(q(t)) = 1/q′(t). But since
q(0) = p(0) = 0, we have that p′(0) = 1/q′(0). The recursive formula

p(n)(q(t)) =

[
p(n−1)(q(t))

]′
q′(t)

(17)

gives p(n)(t) for n ≥ 2. Evaluating at t = 0, we see that the derivatives of q(t)
at zero are q(m)(0) = rm1 c1 + rm2 c2 for m > 1. Thus, this calculation is straight-
forward, and can be done using an algebraic processor such as Mathematicar

(Wolfram Research, Champaign, IL). In this case, the inverse of q is given by
the Taylor series of Eq. (16) where p(1)(0) = q′(0)−1 and p(n)(0), for n ≥ 2,
is given recursively by Eq. (17). While the power series representation of p(t)
has a nonzero radius of convergence, the difficult problem of determining this
radius is beyond the scope of this work.

From a more practical standpoint, p(t) can be evaluated very efficiently using
numerical methods. Given t, we simply approximate the root τ of the function
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q(τ) = t numerically. Efficiency gains can be made by noting the high degree
of linearity of the q(τ) function—especially as time increases—and using this
information to optimize the algorithm. For example, with one line of code in
Mathematicar, we can calculate the inverse of q for all data points.

3 Results and Discussion

3.1 Finding cell volume and intracellular solute concentration maxima and
minima

The extrema of cell volume excursion, cell water volume, and intracellular
solute concentration are of great interest in a number of fields. For example,
cells may lyse if their volume exceeds physiological limits, and irreparable
damage may occur if the cells shrink below physiological limits [4,11]. This is
especially relevant in the field of cryobiology, where cryoprotective agents such
as glycerol cause the cell to shrink upon addition and swell upon removal.

Using q(τ) and its inverse p(t) we have an invertible map between the orig-
inal time space and our new time-transformed space (τ -space) (see Fig. 2).
Because we have an exact solution that does not involve derivatives, we can
use standard calculus techniques to derive information from our equations. For
example, a common use for the exact solution—the one addressed in [6,19]—is
the determination of the maxima and minima of cell volume excursion and/or
chemical concentration. The advantage of our approach is that we can also
determine the time at which the maxima and minima of total cell volume, cell
water volume, and moles of intracellular solute occur.

This can be done by setting the derivative of the solutions in τ -space equal to
zero. For example, maxima and minima of the water volume are given by the
solution of

v′(τ) = c1r1e
r1τ + c2r2e

r2τ = 0. (18)

To determine τ , we multiply both sides of Eq. (18) by e−r1τ and rearrange the
resulting equation to get

e(r2−r1)τ = −c1r1
c2r2

. (19)

Because we have assumed that r1 and r2 are both negative, we know that
c1c2 < 0. Therefore, the term on the right-hand side of Eq. (19) is positive
and we can take the logarithm of both sides to obtain the solution

τwater =
1

r2 − r1
ln
(
−c1r1
c2r2

)
. (20)
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Thus, we have established an explicit solution for the time (τwater) when the
maximum or minimum of intracellular water volume occurs. The correspond-
ing physical time is simply t = q(τwater), given by Eq.( 13).

We can repeat this technique for total cell volume using Eq. (9), or for intra-
cellular permeating solute content using Eq. (7) yielding the equations

τtotal =
1

r2 − r1
ln

−c1r1
(
r1 − b+ a/V

)
c2r2

(
r2 − b+ a/V

)
 , (21)

τsolute =
1

r2 − r1
ln

(
−c1r1(r1 − b)
c2r2(r2 − b)

)
, (22)

where τtotal and τsolute are the τ -space times for the maximum or minimum
of the total cell volume and the number of moles of intracellular permeating
solute, respectively. These formulas are valid only if the argument of the loga-
rithm is positive, which is the case for our test values. Again, we can calculate
the original time using the q transform function. To illustrate the use of the
exact solution in practice we choose typical values for our parameters (as in
Table 1) and use Eq. (9) to get

Vtotal(τ) = 86.76e−6079.18τ − 130.569e−279.536τ + 1043.81. (23)

A plot of cell volume versus time for both a numerically integrated solution
and the new, exact, solution with both time transport functions can be seen
in Fig. 2. In fact, one of the immediate advantages of this exact solution
technique is that a plot can be made quickly and easily—even with a graphing
calculator—to see the dynamics of the curve without the necessity of complex
software. Additionally, a calculator can easily be programmed to give the cell
volume maxima and minima and the times at which they occur—a significant
advantage at the bench top.

A numerical calculation of the minima of both of these plots yields the minima
found by calculating τ from Eq. (20): a minimal volume of 934.29 µm3. Using
the exact solution, we find that this volume occurs at τ = 0.000531. We now
use our q(τ) equation (Eq.( 13)) to convert back to real time. In this case,
q(0.000531) = 0.277935 minutes, which agrees with the time obtained from
the numerically integrated solution.

3.2 Curve fitting

The accuracy of the Jacobs model is dependent upon the accuracy of the pa-
rameters in the model. The hydraulic conductivity Lp and solute permeability
Ps coefficients control the rate at which water and solute enter the cell. To
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determine these coefficients, cell volume is typically measured as a function
of time while cells are exposed to media containing a permeating solute. The
resulting volume versus time data are then fit using the model while varying
the parameters Lp and Ps. Because the model has until now only yielded a nu-
merical solution, developing a curve fitting algorithm has been quite difficult.
Early investigators were able to fit data only by making simplifying assump-
tions [13]. In recent years, as computer software and processing power has
improved, this range has been extended, but curve fitting has been relegated
to complicated software such as MLABr (Civilized Software, Inc., Bethesda,
MD), Mathematicar, or other specialty software, and there is still a trade off
between accuracy and speed.

A new curve fitting algorithm that does not involve numerical integration can
be implemented by transforming data to the linearized space using the time
transformation p(t, Lp, Ps), which depends on the time and the permeability
parameters Lp and Ps. We wish to minimize the sum of squares estimate:

SS(Lp, Ps) =
n∑
i=1

(Vtotal(ti, Lp, Ps)− Vi)2. (24)

Since p(ti, Lp, Ps) = τi and Vtotal(ti)) = vtotal(τi), Eq. 24 can be written in the
transformed time as

SS(Lp, Ps) =
∑n
i=1(vtotal(p(ti, Lp, Ps), Lp, Ps)− Vi)2

=
∑n
i=1(vtotal(τi, Lp, Ps)− Vi)2.

The minimization of this estimate can be made using the exact solution with
common software packages such as SASr (SAS Institute, Inc., Cary, NC)
or Excelr (Microsoft Corporation, Redmond, WA). An advantage of this
methodology is that it will give the most precise estimates of the sum of
the squared error because there is no inherent error caused by numerical in-
tegration. In many cases, this technique is also faster. On the other hand the
time transform must be applied for each data point in the (Lp, Ps)-parameter
space. Using the numerical inverse techniques described above, however, this
transformation takes a negligible amount of time.

For example, suppose our experimental data consist of ten points over a period
of ten minutes. In order to analyze this with the exact solution we only need
to calculate the transform function p(t) ten times to yield data analyzable
with our exact solution in the linearized space, and only make ten (exact)
comparisons. On the other hand, even though there are only ten points, in
order to accurately calculate the volume using the numerical solution of the
differential equation we must discretize our ten minute experimental time
interval into a mesh fine enough to provide accurate estimates. A reasonable
time-step for this system (to retain accuracy) is approximately one second.
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Thus, we must perform approximately 600 calculations to obtain the volume,
together with ten (non-exact) comparisons to yield our sum of squares. With
many data points, this computational advantage of speed is weakened due
to the increasing number of time transform calculations necessary, but the
accuracy advantage will remain.

3.3 Finite element models

When modeling mass transport in organs and tissues, necessary for simulat-
ing the effects of freezing during cryosurgery, a common simulation tool is
finite element analysis. This processor intensive technique models solute and
solvent flux through a tissue by defining a mesh of points and generating a
concentration field corresponding to these points. This field is then used to
estimate transmembrane flux for cells in a region around each mesh point.
Increased numbers of mesh points improve accuracy but slow computations
considerably. A solute solvent flux model must be used for each group of cells
surrounding the mesh points. The result of these solute solvent equations gen-
erates a new field and the state of the tissue or organ is updated as time
is incremented. Current techniques use from a few hundred to hundreds of
thousands of mesh points with processing time increasing significantly as the
number of mesh points increases. Thus the significance of a slight improvement
in the efficiency of this modeling system is amplified with the complexity of
the computation. We note here that these finite element computations can be
performed in the τ -space exactly and efficiently, yielding significant improve-
ments in both computational speed and accuracy in cell volume versus time
simulations.

A numerical experiment was performed in which 100,000 calculations of vol-
ume (Vtotal(.1)) were made for both the numeric and the exact solution of the
Jacobs system (Eq. (1). A 1.2 GHz Intel Pentium 3 laptop carried out the nu-
merical calculation in 7.771 seconds and the exact calculation more than three
times faster at a time of 2.073 seconds. Thus for very large finite element grids
where multiple time points are needed, the exact solution may be a significant
improvement in efficiency. For example, to describe the volume flux of a rela-
tively small tissue model containing 5000 cells (such as an islet of Langerhans)
over the course of 25 minutes (the time to load islets of Langerhans with 1.5
M Me2SO [18]) one needs at least 1500 time-steps. Thus 1500 time-steps at
5000 volume calculations each yields a total of 7.5 ×106 calculations. On the
above laptop, this calculation would take approximately ten minutes. On the
other hand, using the exact solution techniques, the same calculation could
be carried out with no error in 2.6 minutes. This sort of large-scale solution
can be implemented to predict behavior of much more complicated systems.
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4 Conclusions

We have presented an exact solution to a system of differential equations that
has been in continuous use in biology for more than 70 years in modeling
solute and solvent transmembrane flux for single cells, multicellular systems
and tissues. Our method has distinct advantages over traditional numerical
integration techniques in both calculation time and numerical accuracy, which
allow for expanded applications in optimizing CPA addition and removal and
in modeling solute and solvent flux in large multicellular systems. Finally, we
have presented simple formulas for the calculation of maximum and minimum
cellular water volume, intracellular solute concentration, total cell volume and
the times at which they occur without requiring numerical integration.
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Figure Legends

Figure 1. Plot of q(τ) using the test values from Table 2. Note that the high
degree of linearity allows for an efficient transformation from the original time
space to the τ -space.
Figure 2. To use the exact solution we apply a time transform, p(t), to take
data from the physical space on the left (panel A) to the new space (τ -space)
on the right (panel B). Note that the volume excursions remain unchanged,
and all analysis of the transformed system will apply to the original system.
To return to the original time, we use the inverse transform q(τ). In this
figure we show plots of both numerically integrated and exact solutions using
the appropriate transform function, e.g. the plot on the left shows an overlay
of Vnumeric(t) and Vexact(p(t)), and the plot on the right shows an overlay of
Vnumeric(q(τ)) and Vexact(τ).
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Table 1
Definitions of major symbols and their test values

Symbol Test Value Units Description

i, e Superscripts (i, intracellular; e, extracellular)

n, s Subscripts (n, non-permeating; s, permeating)

Vb 0.4 unitless Osmotically inactive fraction

Viso 1000 µm3 Isosmotic cell volume

Vw µm3 Intracellular Water Volume

nis fmol Femtomoles intracellular permeating solute

nin fmol Femtomoles intracellular non-permeating solute

δ1 1 osmol L mol−1 kg−1 Osmolality conversion factor

for permeating solute

δ2 1.95 osmol L mol−1 kg−1 Osmolality conversion factor

for non-permeating solute

Lp 0.1 µm min−1 atm−1 Hydraulic Conductivity

Ps 10 µm min−1 Solute permeability coefficient

A 483.6 µm2 Cellular surface area (assumed fixed)

R 0.08206 L atm K−1 mol−1 Gas constant

T 295.16 Kelvin Temperature

t min Time

V .0730151 L mol−1 Partial molar volume of typical CPA

M e
s 1.0 osm kg−1 Extracellular permeating solute osmolality

M e
n 0.3 osm kg−1 Extracellular non-permeating solute osmolality

M i
s 0 osm kg−1 Initial intracellular permeating solute osmolality

M i
n 0.3 osm kg−1 Initial intracellular non-permeating solute

osmolality
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Table 2
Definitions of constants and their test values
Constant Test Value Parameters

a 1171.32 LpARTδ1

b -1522.72 −LpART (M e
s +M e

n)

c 210837 LpARTδ2n
i
n

nin 180 M i
n(0)Vw(0)

α -4836 −PsAδ1

β 4836 PsAM
e
s

γ -1.69935 ×106 −δ1PsLpA2RTM e
n

ρ -6358.72 −δ1PsA+ LpART (M e
s +M e

n)

2r1 -12158.4 ρ−
√
ρ2 + 4γ

2r2 -559.072 ρ+
√
ρ2 + 4γ

c1 121.178 (2bcα− cr2α+ γ(c+ ax(0) + by(0)− r2y(0)))/γ(r1 − r2)

c2 -121.178 −(2bcα− cr1α+ γ(c+ ax(0) + by(0)− r1y(0)))/γ(r1 − r2)

c3 600 αc/γ
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